Solar Salt Ponds as a Clean Energy Bioreactors

Review of natural principles of high quality solar salt production

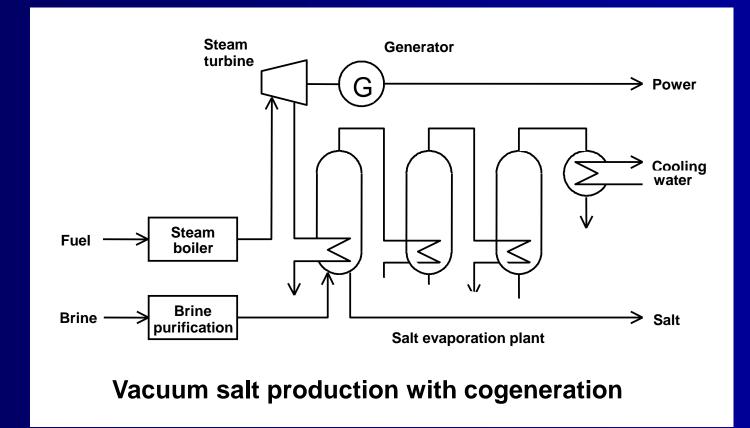
Vladimir M. Sedivy MSc (Hons) Chem Eng, IMD President Salt Partners Ltd, Zurich, Switzerland

Salt Consumption World-wide

Salt user	Salt consumption
Chemical industry	155,000,000 t/y
Food	45,000,000 t/y
De-icing	30,000,000 t/y
Other	30,000,000 t/y
Total	260,000,000 t/y

SALT PARTNERS

Main salt uses world-wide

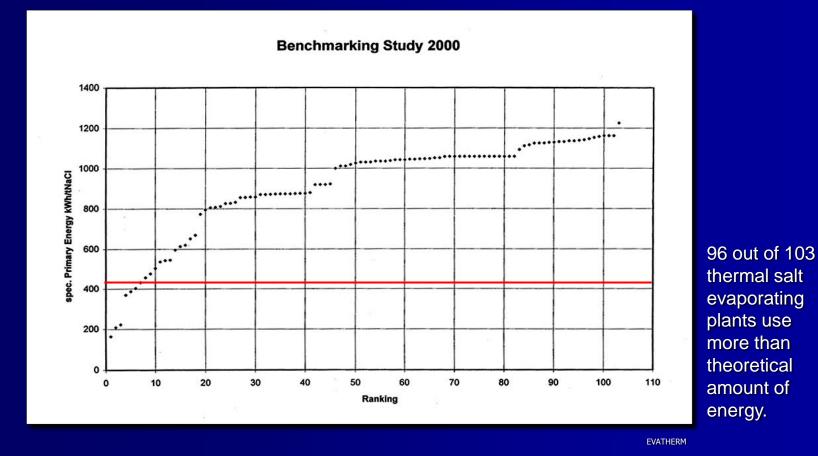

Caustic / Chlorine	36%
Soda Ash	17%
Other Chemicals	3%
Human Consumption	22%
Road De-icing	12%
Other Uses	10%

Salt Production World-wide

Salt type	World production
Solar salt	100,000,000 t/y
Rock salt	80,000,000 t/y
Brines	80,000,000 t/y
Total	260,000,000 t/y

SALT PARTNERS

Multiple Effect Crystallisation


Prime energy consumption for multiple effect vacuum salt crystallisation

Water evaporation	3 t / t of salt
Steam to first effect	10 – 12 bar g
Number of effects	6
Steam consumption	0.62 t / t of salt
Boiler efficiency	85%
Prime energy consumption	420 kWh / t of salt

Prime energy consumption for salt crystallisation by thermocompression with mechanical vapour recompression

Water evaporation	3 t / t of salt
Power consumption	160 kWh / t of salt
Power generation efficiency	38%
Prime energy consumption	420 kWh / t of salt

Salt Partners Energy Consumption Benchmarking Study

Second Salt Workshop on Ecology and Economy of Solar Salt Production, Hotel Garbos, Mossoro, RN, Brazil, 23.-26.11.2010

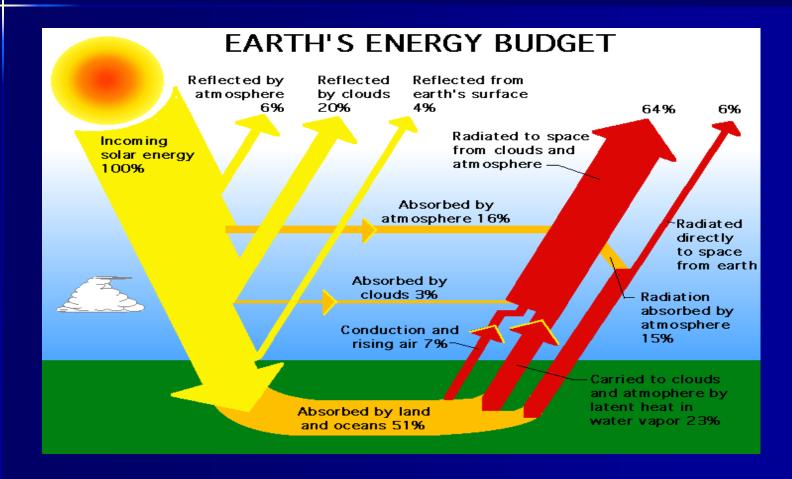
Vladimir M. Sedivy Salt Partners Ltd, Zurich, Switzerland

In China, black coal is burned to make steam for vacuum salt production.

WU HONG / EPA

Hurricane "Katrina" in the Gulf of Mexico on 29.8.2005.

NASA


Destructive Climatic Change

Hurricane "Katrina" destroyed large parts of New Orleans and surroundings. Increased hurricane activity is believed to be caused by global warming.

Groenteman

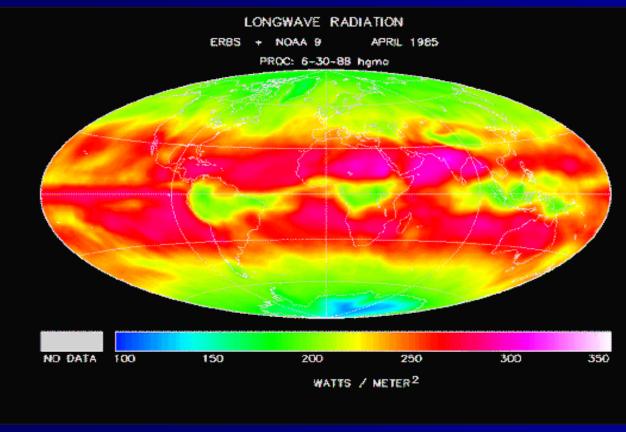
Earth's solar energy budget

Solar salt evaporation

Sea water density	3.85°Bè
NaCl content	30.09 kg NaCl / m3
Bitterns density	28.53°Bè
NaCl in bitterns	8.37 kg
NaCl crystallised	21.72 kg
Water evaporated	949.93 kg
Water evaporation	43.74 t H2O / t NaCl
Heat of water evaporation	0.675 kWh / kg H2O
Solar energy consumption	29'520 kWh / t NaCl

Solar energy conversion into evaporation

Earth insolation	1.366 kW / m2
Surface insolation absorbed	51%
Solar energy absorbed in zenith	0.697 kW / m2
Daily solar energy absorption	5 – 7 kWh / m2 / day
Conversion efficiency	45%
Daily solar evaporation energy	2 – 3 kWh / m2 / day
Heat of water evaporation	0.675 kWh / kg H2O
Daily evaporation	3 – 5 kg H2O / day
Annual evaporation	1.1 – 1.8 m H2O / year


Solar evaporation conversion into salt

Annual evaporation	1.1 – 1.8 m H2O / year
Salt crystallised per tonne of sea water evaporated	22.86 kg / t H2O
Corresponding salt production	27 – 44 kg NaCl / m2 / year
Crystalliser area	10%
Salt layer in crystallisers	270 – 440 kg NaCl / m2 / year
Salt layer density	2 t / m3
Salt layer thickness	13 – 22 cm

Conversion efficiencies

Photovoltaic cells	8 – 15%
Solar collectors with stirling engine	30%
Super critical steam power plants	40 – 45%
Solar salt production	45%

Solar Energy on the Planet Earth

Locations with highest rates of evaporation:

Caribbean Sea South Aerica North Africa South Africa Middle East Western India Western Australia

Other solar salt production areas receive only half the solar energy available at the most suitable locations.

NASA

Impurities in salt

	Rock salt	Sea salt	Lake salt	Brines
CaSO4	0.5 – 2%	0.5 – 1%	0.5 – 2%	Saturated
MgSO4	Traces	0.2 – 0.6%	Traces	Traces
MgCl2		0.3 – 1%	Traces	
CaCl2			Traces	
Na2SO4			Traces	
KCI	Traces	Traces	Traces	Traces
NaBr	Traces	Traces	Traces	Traces
Insolubles	1 – 30%	0.1 – 1%	1 – 10%	

What impurities in salt cause in mercury and membrane cells employed in chloralkali industry

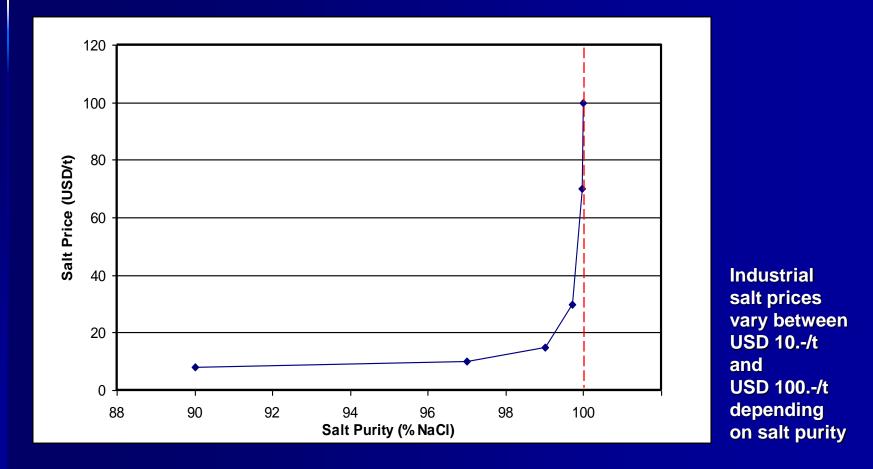
- Hydrogen evolution
- Mercury butter
- Membrane damage
- Incrustations
- Sludge deposits

General Cost of Salt and Impurity Removal

	Cost of brine treatment and sludge disposal	Cost of salt, brine treatment and sludge disposal
	(USD / t salt)	(USD / t salt)
Minimum	1.50	10
Average	10	25
Maximum	30	50

SALT PARTNERS AT GANDHIDHAM 2008 SALT CONFERENCE

Relative cost of salt and brine purification in the chloralkali industry


	Cost of brine treatment as percentage of salt cost	Percentage of chloralkali production cost
	%	%
Minimum	120	3.6
Average	166	15
Maximum	256	37

Conclusion:

Production of poor quality salt is undesirable

- Impurities increase the cost of brine treatment in chloralkali plants
- Poor quality salts cause excessive contaminated effluent discharge

Salt Partners Salt Prices Depend on Salt Purity

Second Salt Workshop on Ecology and Economy of Solar Salt Production, Hotel Garbos, Mossoro, RN, Brazil, 23.-26.11.2010

Vladimir M. Sedivy Salt Partners Ltd, Zurich, Switzerland

Three solar saltworks areas that are critical to production of high quality solar sea salt

- Sea water pre-concentration area
- Solar salt crystallisation area
- Salt purification plant

Second Salt Workshop on Ecology and Economy of Solar Salt Production, Hotel Garbos, Mossoro, RN, Brazil, 23.-26.11.2010

Vladimir M. Sedivy Salt Partners Ltd, Zurich, Switzerland

Sea water pre-concentration area

What to do and what to avoid in the sea water pre-concentration area

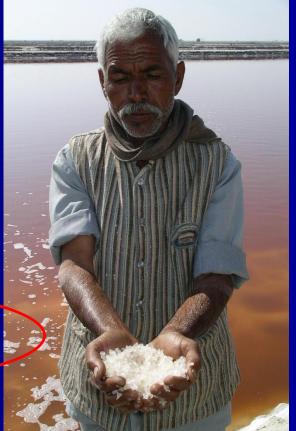
- Increase concentration gradually, avoid back-mixing
- Prevent seepage
- Cultivate dark pre-concentration pond bottom
- Maintain clear brine
- Avoid calcium sulphate over-saturation
- Allow nutrients in brine to get consumed

What to do and what to avoid in the sea water pre-concentration area

- Increase concentration gradually, avoid back-mixing
- Prevent seepage
- Cultivate dark pre-concentration pond bottom
- Maintain clear brine
- Avoid calcium sulphate over-saturation
- Allow nutrients in brine to get consumed

Solar salt crystallisation area

- **Employ crystallisers in series** \bullet
- Drain 28.5°Bè brine
- Allow thick brine layer to avoid • reflection of solar radiation
- Harvest under level control to avoid • salt contamination with insolubles
- Support growth of Halobacterium that colours the brine red
- Avoid formation of organic material • that causes growth of small crystal agglomerates

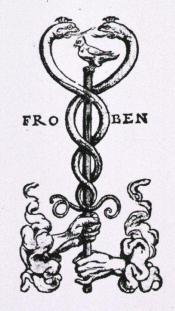


Solar salt crystallisation area

- Employ crystallisers in series
- Drain 28.5°Bè brine
- Allow thick brine layer to avoid reflection of solar radiation
- Harvest under level control to avoid salt contamination with insolubles
- Support growth of *Halobacterium* that colours the brine red
- Avoid formation of organic material that causes growth of small crystal agglomerates

Already in 1556, Swiss scientist Georg Bauer, also known as Georgius Agricola, in his famous book De Re Metallica (About the Nature of Metals) indicated that the salt crystal growth can be influenced by addition of organic material of biological origin to the brine from which salt crystals are produced by evaporation.

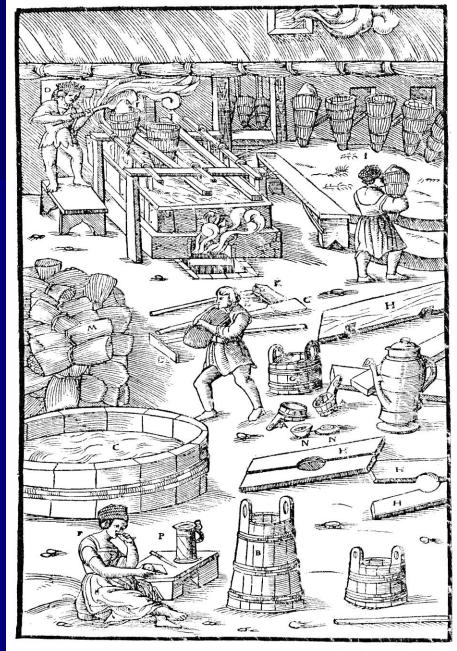
Second Salt Workshop on Ecology and Economy of Solar Salt Production, Hotel Garbos, Mossoro, RN, Brazil, 23.-26.11.2010


GEORGII AGRICOLAE

BVS OFFICIA, INSTRVMENTA, MACHINAE, AC OMNIA DENIque ad Metallicam speetantia, non modò luculentissime describuntur, sed t per effigies, suis locu insertas, adiunettu Latinu, Germanicus, appellationibus ita ob oculos ponuntur, ot clarius tradi non possint.

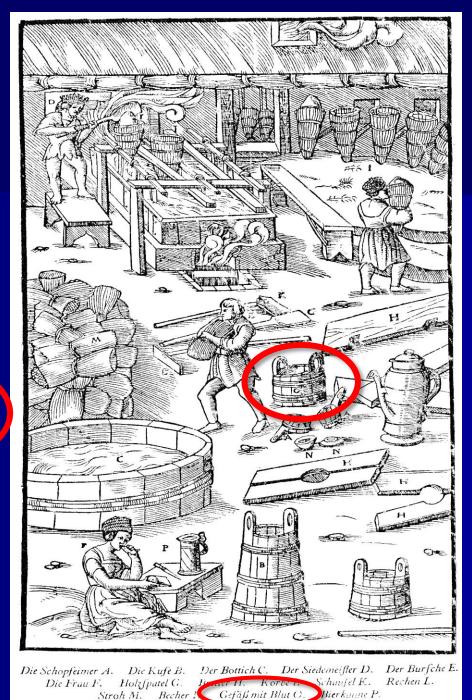
DE ANIMANȚIBVS SVBTERRANEIS LIBER, AB AVTORB recognitus:cum Indicibus diuersis, quicquid in opere tractatum est, pulchre demonstrantibus, atg. omnibus nunc iterum ad archetypum diligenter restitutis tr) castigatis.

VSD


1

BASILEAE M. D. LXI.

Cum Priuilegio Imperatoris in annos v. & Galliarum Regis ad fexennium.


On this engraving, Agricola describes salt production in Switzerland where solar evaporation was not feasible. Brine was heated by burning straw and crystallised in an open pan by thermal evaporation.

Die Schöpfeimer A. Die Kufe B. Der Bottich C. Der Siedemeißter D. Der Burfche E. Die Frau F. Holzfpatel G. Bretter H. Körbe I. Schaufel K. Rechen L. Stroh M. Becher N. Gefäß mit Blut O. Bierkanne P.

Second Salt Workshop on Ecology and Economy of Solar Salt Production, Hotel Garbos, Mossoro, RN, Brazil, 23.-26.11.2010

Vladimir M. Sedivy Salt Partners Ltd, Zurich, Switzerland

Solar salt from poorly managed saltworks

Salt that looks like a crystal but it is an agglomerate of small crystals.

The agglomerate can be broken by hand.

Impurities are imbedded between the small crystals.

The salt is not well upgradeable.

Solar salt from well managed saltworks

Hard, clear crystals, impossible to break by hand.

Impurities are only on the surface of the crystals.

The salt is very well upgradeable.

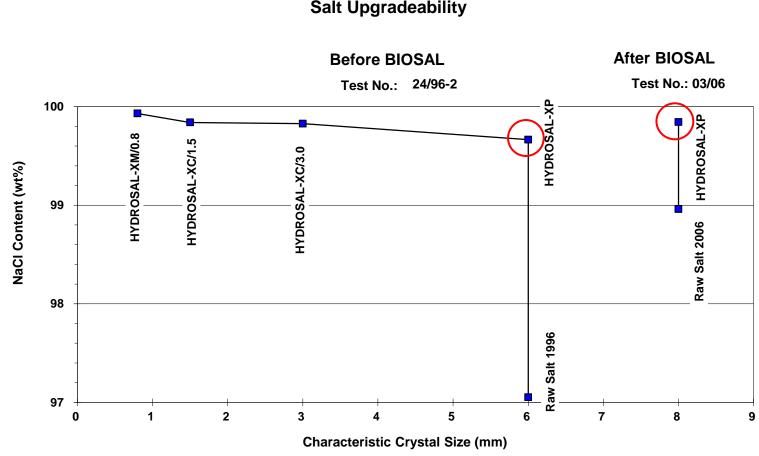
Results of BIOSAL Biological Saltworks Management

	Raw salt 1996	Raw salt 2006	Impurity reduction
Са	0.183	0.175	4%
Mg	0.527	0.097	82%
SO4	1.29	0.595	54%
Insolubles	0.04	0.02	50%
NaCl	97.052	98.96	65%

Raw salt quality improvement achieved by application of BIOSAL biological management techniques in Walvis Bay saltworks in Namibia

Results of BIOSAL Biological Saltworks Management

	Upgraded salt 1996	Upgraded salt 2006	Impurity reduction
Са	0.070	0.032	54%
Mg	0.020	0.008	60%
SO4	0.200	0.101	50%
Insolubles	0.02	0.01	50%
NaCl	99.66	99.84	53%


Upgradeability improvement achieved by application of BIOSAL biological management techniques in Walvis Bay saltworks in Namibia

Results of BIOSAL Biological Saltworks Management

	Upgraded salt 1996	Upgraded salt 2006	Impurity reduction
Са	0.070	0.032	54%
Mg	0.020	0.008	60%
SO4	0.200	0.101	50%
Insolubles	0.02	0.01	50%
NaCl	99.66	99.84	53%

Upgradeability improvement achieved by application of BIOSAL biological management techniques in Walvis Bay saltworks in Namibia

Salt Upgradability test Before and After BIOSAL

Salt Upgradeability

Second Salt Workshop on Ecology and Economy of Solar Salt Production, Hotel Garbos, Mossoro, RN, Brazil, 23.-26.11.2010

Vladimir M. Sedivy Salt Partners Ltd, Zurich, Switzerland

Salt Partners Prospect New Solar Saltfields

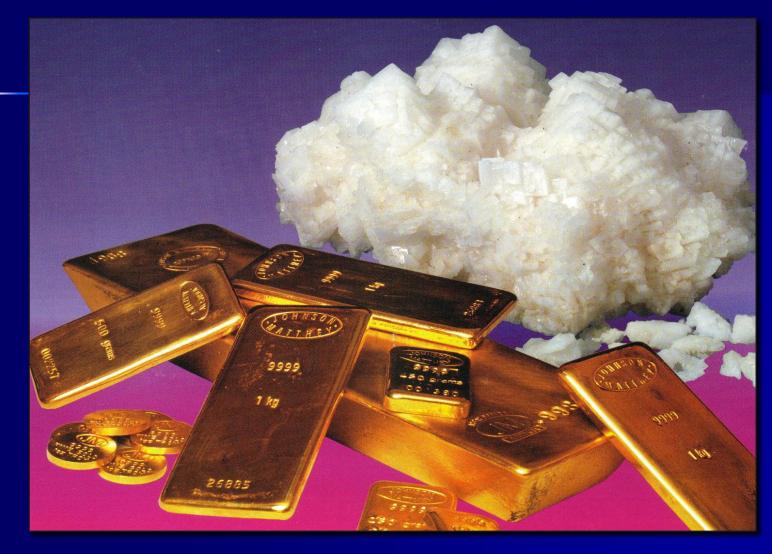
Salt Partners assist their clients to prospect sites where new solar saltfields could be established.

SALT PARTNERS

Salt Partners Modernise Solar Saltworks

Salt Partners provide SOLARSAL technology to their clients to increase efficiency solar salt production.

ROV DURRANT


Salt Partners supply technologies for production of salt according to Australian standard:

> Ca < 0.04% Mg < 0.02% SO₄ < 0.12%

Modern industrial salt upgrading plant in Spain. Capacity up to 700 t/h when operating with solar salt.

Why not turn your salt into gold?

